Matrix analysis

subfield o linear algebra

Matrix analysis is a subfield o linear algebra. It focuses on analytical properties o matrices[1][2][3][4][5].

Main topics

eedit

The followin topics are studiit i the context o matrix analysis[1][2][3][4][5]:

  • Inequalities relatit tae matrix norms or matrix eigenvalues[6][7][8][9]
  • Behavior o matrix eigenvalues

Journals

eedit

The followin journals include articles aboot matrix analysis:

  • SIAM Journal on Matrix Analysis and Applications
  • Linear Algebra and its Applications
  • Linear and Multilinear Algebra
  • The Electronic Journal of Linear Algebra

References

eedit
  1. a b Horn, R. A., & Johnson, C. R. (2012). Matrix analysis. Cambridge University Press.
  2. a b Bellman, R. (1997). Introduction to matrix analysis. SIAM.
  3. a b Meyer, C. D. (2000). Matrix analysis and applied linear algebra. SIAM.
  4. a b Bhatia, R. (2013). Matrix analysis. Springer Science & Business Media.
  5. a b Applied Linear Algebra and Matrix Analysis, Thomas S. Shores, Undergraduate Texts in Mathematics (2018). Springer International Publishing.
  6. Kittaneh, F. (1992). A note on the arithmetic-geometric-mean inequality for matrices. en:Linear Algebra and its Applications, 171, 1-8.
  7. Bhatia, R., & Kittaneh, F. (2000). Notes on matrix arithmetic–geometric mean inequalities. Linear Algebra and Its Applications, 308(1-3), 203-211.
  8. Bhatia, R., & Davis, C. (1993). More matrix forms of the arithmetic-geometric mean inequality. SIAM Journal on Matrix Analysis and Applications, 14(1), 132-136.
  9. Cardoso, J. R., & Ralha, R. (2016). Matrix arithmetic-geometric mean and the computation of the logarithm. SIAM Journal on Matrix Analysis and Applications, 37(2), 719-743.

Further Reading

eedit
  • Alan J. Laub (2012). Computational Matrix Analysis. SIAM. ISBN 161-197-221-3.
  • N. J. Higham (2000). Functions of Matrices: Theory and Computation. SIAM. ISBN 089-871-777-9.