Matrix analysis

subfield o linear algebra

Matrix analysis is a subfield o linear algebra. It focuses on analytical properties o matrices[1][2][3][4][5].

Main topicsEedit

The followin topics are studiit i the context o matrix analysis[1][2][3][4][5]:

  • Inequalities relatit tae matrix norms or matrix eigenvalues[6][7][8][9]
  • Behavior o matrix eigenvalues

JournalsEedit

The followin journals include articles aboot matrix analysis:

  • SIAM Journal on Matrix Analysis and Applications
  • Linear Algebra and its Applications
  • Linear and Multilinear Algebra
  • The Electronic Journal of Linear Algebra

ReferencesEedit

  1. 1.0 1.1 Horn, R. A., & Johnson, C. R. (2012). Matrix analysis. Cambridge University Press.
  2. 2.0 2.1 Bellman, R. (1997). Introduction to matrix analysis. SIAM.
  3. 3.0 3.1 Meyer, C. D. (2000). Matrix analysis and applied linear algebra. SIAM.
  4. 4.0 4.1 Bhatia, R. (2013). Matrix analysis. Springer Science & Business Media.
  5. 5.0 5.1 Applied Linear Algebra and Matrix Analysis, Thomas S. Shores, Undergraduate Texts in Mathematics (2018). Springer International Publishing.
  6. Kittaneh, F. (1992). A note on the arithmetic-geometric-mean inequality for matrices. en:Linear Algebra and its Applications, 171, 1-8.
  7. Bhatia, R., & Kittaneh, F. (2000). Notes on matrix arithmetic–geometric mean inequalities. Linear Algebra and Its Applications, 308(1-3), 203-211.
  8. Bhatia, R., & Davis, C. (1993). More matrix forms of the arithmetic-geometric mean inequality. SIAM Journal on Matrix Analysis and Applications, 14(1), 132-136.
  9. Cardoso, J. R., & Ralha, R. (2016). Matrix arithmetic-geometric mean and the computation of the logarithm. SIAM Journal on Matrix Analysis and Applications, 37(2), 719-743.

Further ReadingEedit

  • Alan J. Laub (2012). Computational Matrix Analysis. SIAM. ISBN 161-197-221-3.
  • N. J. Higham (2000). Functions of Matrices: Theory and Computation. SIAM. ISBN 089-871-777-9.