INTLAB
interval arithmetic library usin MATLAB
INTLAB (INTerval LABoratory) is an interval arithmetic library usin MATLAB[1][2][3][4]. INTLAB wis usit tae develop other MATLAB-basit libraries such as VERSOFT[5] an INTSOLVER[6], an it wis usit tae solve some problems i the " Hundred-dollar, Hundred-digit Challenge problems"[7].
Oreeginal author(s) | S.M. Rump |
---|---|
Developer(s) | S.M. Rump Cleve Moler Shinichi Oishi etc. |
Written in | MATLAB/GNU Octave |
Operatin seestem | Unix, Microsoft Windows, macOS |
Available in | English |
Teep | Numerical analysis Validatit numerics[1][2][3][4] Numerical linear algebra[1][2][3][4] Integral (Numerical integration[1][3]) Numerical methods for ordinary differential equations[1][3][8] etc. |
Website | www |
Version history
eedit- 12/30/1998 Version 1
- 03/06/1999 Version 2
- 11/16/1999 Version 3
- 03/07/2002 Version 3.1
- 12/08/2002 Version 4
- 12/27/2002 Version 4.1
- 01/22/2003 Version 4.1.1
- 11/18/2003 Version 4.1.2
- 04/04/2004 Version 5
- 06/04/2005 Version 5.1
- 12/20/2005 Version 5.2
- 05/26/2006 Version 5.3
- 05/31/2007 Version 5.4
- 11/05/2008 Version 5.5
- 05/08/2009 Version 6
- 12/12/2012 Version 7
- 06/24/2013 Version 7.1
- 05/10/2014 Version 8
- 01/22/2015 Version 9
Works citit bi INTLAB
eeditINTLAB is basit on the previous studies o the main author, includin his works wi co-authors.
- S. M. Rump: Fast and Parallel Interval Arithmetic, BIT Numerical Mathematics 39(3), 539–560, 1999.
- S. Oishi, S. M. Rump: Fast verification of solutions of matrix equations, Numerische Mathematik 90, 755–773, 2002.
- T. Ogita, S. M. Rump, and S. Oishi. Accurate Sum and Dot Product, SIAM Journal on Scientific Computing (SISC), 26(6):1955–1988, 2005.
- S.M. Rump, T. Ogita, and S. Oishi. Fast High Precision Summation. Nonlinear Theory and Its Applications (NOLTA), IEICE, 1(1), 2010.
- S.M. Rump: Ultimately Fast Accurate Summation, SIAM Journal on Scientific Computing (SISC), 31(5):3466–3502, 2009.
- S.M. Rump, T. Ogita, and S. Oishi: Accurate Floating-point Summation I: Faithful Rounding. SIAM Journal on Scientific Computing (SISC), 31(1): 189–224, 2008.
- S. M. Rump, T. Ogita, and S. Oishi: Accurate Floating-point Summation II: Sign, K-fold Faithful and Rounding to Nearest. SIAM Journal on Scientific Computing (SISC), 31(2):1269–1302, 2008.
- S. M. Rump: Ultimately Fast Accurate Summation, SIAM Journal on Scientific Computing (SISC), 31(5):3466–3502, 2009.
- S. M. Rump. Accurate solution of dense linear systems, Part II: Algorithms using directed rounding. Journal of Computational and Applied Mathematics (JCAM), 242:185–212, 2013.
- S. M. Rump. Verified Bounds for Least Squares Problems and Underdetermined Linear Systems. SIAM Journal of Matrix Analysis and Applications (SIMAX), 33(1):130–148, 2012.
- S. M. Rump: Improved componentwise verified error bounds for least squares problems and underdetermined linear systems, Numerical Algorithms, 66:309–322, 2013.
- R. Krawzcyk, A. Neumaier: Interval slopes for rational functions and associated centered forms, SIAM Journal on Numerical Analysis 22, 604–616 (1985)
- S. M. Rump: Expansion and Estimation of the Range of Nonlinear Functions, Mathematics of Computation 65(216), pp. 1503–1512, 1996.
External links
eedit- INTLAB Archived 2020-01-30 at the Wayback Machine
- List of INTLAB contributors Archived 2020-08-06 at the Wayback Machine
- VERSOFT
- INTSOLVER
References
eedit- ↑ a b c d e S.M. Rump: INTLAB – INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, pages 77–104. Kluwer Academic Publishers, Dordrecht, 1999.
- ↑ a b c Moore, R. E., Kearfott, R. B., & Cloud, M. J. (2009). Introduction to Interval Analysis. Society for Industrial and Applied Mathematics.
- ↑ a b c d e Rump, S. M. (2010). Verification methods: Rigorous results using floating-point arithmetic. Acta Numerica, 19, 287–449.
- ↑ a b c Hargreaves, G. I. (2002). Interval analysis in MATLAB. Numerical Algorithms, (2009.1).
- ↑ Rohn, J. (2009). VERSOFT: verification software in MATLAB/INTLAB.
- ↑ Montanher, T. M. (2009). Intsolver: An interval based toolbox for global optimization. Version 1.0.
- ↑ Bornemann, F., Laurie, D., & Wagon, S. (2004). The SIAM 100-digit challenge: a study in high-accuracy numerical computing. Society for Industrial and Applied Mathematics.
- ↑ Lohner, R. J. (1987). Enclosing the solutions of ordinary initial and boundary value problems. Computer arithmetic, 225–286.