Differential equation
A differential equation is a mathematical equation that relates some function wi its derivatives.
Saftware
eeditReferences
eedit- ↑ https://www.maplesoft.com/support/help/Maple/view.aspx?path=dsolve
- ↑ Betounes, D. (2013). Differential Equations: Theory and Applications: With Maple®. Springer Science & Business Media.
- ↑ Quarteroni, A., Saleri, F., & Gervasio, P. (2006). Scientific computing with MATLAB and Octave. Berlin: Springer.
- ↑ Gander, W., & Hrebicek, J. (Eds.). (2011). Solving problems in scientific computing using Maple and Matlab®. Springer Science & Business Media.
- ↑ Barnes, B., & Fulford, G. R. (2011). Mathematical modelling with case studies: a differential equations approach using Maple and MATLAB. Chapman and Hall/CRC.
- ↑ Wouwer, A. V., Saucez, P., & Vilas, C. (2014). Simulation of Ode/Pde Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications. Springer.
- ↑ Houcque, D. (2008). Applications of MATLAB: Ordinary differential equations (ODE). Robert R. McCormick School of Engineering and Applied Science-Northwestern University, Evanston.
- ↑ Shampine, L. F., & Reichelt, M. W. (1997). The matlab ode suite. SIAM Journal on Scientific Computing, 18(1), 1-22.
- ↑ Ashino, R., Nagase, M., & Vaillancourt, R. (2000). Behind and beyond the MATLAB ODE suite. Computers & Mathematics with Applications, 40(4-5), 491-512.
- ↑ Baumann, G. (2013). Symmetry analysis of differential equations with Mathematica®. Springer Science & Business Media.
- ↑ Abell, M. L., & Braselton, J. P. (2016). Differential equations with Mathematica. Academic Press.
- ↑ Gray, A., Mezzino, M., & Pinsky, M. A. (1997). Introduction to ordinary differential equations with Mathematica: an integrated multimedia approach. Springer.
- ↑ Ross, C. C. (2013). Differential equations: an introduction with Mathematica®. Springer Science & Business Media.
- ↑ http://doc.sagemath.org/html/en/tutorial/tour_algebra.html
- ↑ Zimmermann, P., Casamayou, A., Cohen, N., Connan, G., Dumont, T., Fousse, L., ... & Thiéry, N. M. (2018). Computational mathematics with SageMath. Society for Industrial and Applied Mathematics.
- ↑ http://www-fourier.ujf-grenoble.fr/~parisse/giac/cascmd_en.pdf