Masatake Mori

Japanese numerical analyst an a former professor at the Varsity o Tokyo an Kyoto Varsity

Masatake Mori (1937-2017) is a Japanese numerical analyst an a former professor at the Varsity o Tokyo an Kyoto Varsity. He is known for his contributions tae numerical analysis, especially the invention o the double exponential integration formula (effective method for numerical integration)[1][2][3]. He also haed several joint studies wi Masaaki Sugihara[5][6][7][8].

Masatake Mori
Naitionality Japan
Alma materVarsity o Tokyo
Kent forDouble exponential integration formula[1][2][3]
Discrete Variational Method[4]
Scientific career
FieldsNumerical integration
Numerical methods for pairtial differential equations
InstitutionsVarsity o Tokyo
Kyoto Varsity


  1. a b Takahasi, H. and Mori, M. (1974). “Double exponential formulas for numerical integration”. Publications of the Research Institute for Mathematical Sciences 9 (3): 721–741.
  2. a b Weisstein, Eric W. "Double Exponential Integration." From MathWorld--A Wolfram Web Resource.
  3. a b Mori, M. Developments in the Double Exponential Formula for Numerical Integration. Proceedings of the International Congress of Mathematicians, Kyoto 1990. New York: Springer-Verlag, pp. 1585-1594, 1991.
  4. Matsuo, T., Sugihara, M., Furihata, D., & Mori, M. (2002). Spatially accurate dissipative or conservative finite difference schemes derived by the discrete variational method. Japan Journal of Industrial and Applied Mathematics, 19(3), 311.
  5. Mori, M., & Sugihara, M. (2001). The double-exponential transformation in numerical analysis. Journal of Computational and Applied Mathematics, 127(1-2), 287-296.
  6. Muhammad, M., Nurmuhammad, A., Mori, M., & Sugihara, M. (2005). Numerical solution of integral equations by means of the Sinc collocation method based on the double exponential transformation. Journal of Computational and Applied Mathematics, 177(2), 269-286.
  7. Tanaka, K. I., Sugihara, M., Murota, K., & Mori, M. (2009). Function classes for double exponential integration formulas. Numerische Mathematik, 111(4), 631-655.
  8. Nurmuhammad, A., Muhammad, M., Mori, M., & Sugihara, M. (2005). Double exponential transformation in the Sinc-collocation method for a boundary value problem with fourth-order ordinary differential equation. Journal of Computational and Applied Mathematics, 182(1), 32-50.